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SUMMARY

Considerable recent interest has focused on doubly robust estimators for a population mean
response in the presence of incomplete data, which involve models for both the propensity score
and the regression of outcome on covariates. The usual doubly robust estimator may yield severely
biased inferences if neither of these models is correctly specified and can exhibit nonnegligible
bias if the estimated propensity score is close to zero for some observations. We propose alternative
doubly robust estimators that achieve comparable or improved performance relative to existing
methods, even with some estimated propensity scores close to zero.

Some key words: Causal inference; Enhanced propensity score model; Missing at random; No unmeasured confounders;
Outcome regression.

1. INTRODUCTION

The challenge of estimating a population mean response on the basis of incomplete data arises
in many settings. Nonresponse in sample surveys or dropout and noncompliance in clinical
trials may lead to missing outcomes for some subjects; likewise, making causal inference on
a treatment mean may be viewed as a missing data problem, where potential outcomes under
treatment are missing for subjects actually observed to receive control (Kang & Schafer, 2007).
In these situations, unless the missingness mechanism is completely at random (Rubin, 1976), it
is well known that the naive sample mean based on the complete cases is a biased estimator.

If missing data can reasonably be assumed missing at random, or, equivalently, if the no
unmeasured confounders assumption (Rosenbaum & Rubin, 1983; Robins et al., 2000) is ten-
able when making causal inference from observational data, popular approaches include es-
timation based on a posited outcome regression model for the relationship between response
and covariates and methods that use fitted models for the propensity score, the probability of
the response being observed given covariates (Rosenbaum & Rubin, 1983), such as stratifica-
tion or matching (Rosenbaum & Rubin, 1984; Rubin & Thomas, 1996; Lunceford & Davidian,
2004) and inverse probability weighting of responses (Robins et al., 1994; Rosenbaum, 1987;
Lunceford & Davidian, 2004). These methods require correct specification of the model for
outcome regression or propensity score, respectively. Robins et al. (1994) identified a class of
augmented inverse probability weighted estimators that involve modelling both the outcome
regression and propensity score, with the efficient member of the class obtained when both
models are correct. Scharfstein et al. (1999) noted that estimators in this class are doubly robust
in that they are consistent for the true population mean even if one of the outcome regression
or propensity score models, but not both, is misspecified. Given the protection afforded by this
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property, these estimators have been advocated for routine use (Bang & Robins, 2005). However,
Kang & Schafer (2007) demonstrated via simulation that the usual doubly robust estimator can
be severely biased when both models are misspecified, even if they are nearly correct, and that
bias is especially problematic when some estimated propensity scores are close to zero, yielding
very large weights. Estimation based on an outcome regression model only performed much
better under misspecification in the Kang–Schafer simulation scenario, leading the authors to
warn against the use of doubly robust estimators in practice. Tan (2006) discussed alternative
approaches to constructing doubly robust estimators that may alleviate some of these difficulties.
In this paper, we propose doubly robust estimators that may yield improved performance relative
to existing competitors.

2. EXISTING DOUBLY ROBUST ESTIMATORS

As in Kang & Schafer (2007), we consider the standard missing data set-up; the spirit of the
developments is equally relevant to the causal inference context. Consider n subjects drawn
at random from a population of interest, where the ideal, full data are (Yi , Xi ) (i = 1, . . . , n)
independent and identically distributed across i ; Yi is the response or outcome; and Xi is a vector
of covariates. As in § 1, Yi is not available for all subjects; thus, the data actually observed are
independent and identically distributed (Ri Yi , Ri , Xi ) (i = 1, . . . , n), where Ri = 1 or 0 as Yi

is observed or missing. The goal is to estimate the population mean, μ = E(Y ), on the basis of
these observed data. Throughout, assume that responses are missing at random (Rubin, 1978) in
that Yi and Ri are conditionally independent given Xi .

The propensity score is pr(R = 1 | X ); denote the true propensity score as π0(X ). Ordinarily,
π0(X ) is unknown, and it is customary to posit a parametric model; for example, a logis-
tic regression model π(X, γ ) = {1 + exp(X̃ Tγ )}−1, X̃ = (1, X T)T. Letting γ̂ denote the maxi-
mum likelihood estimator for γ based on (Ri , Xi ) (i = 1, . . . , n), it is straightforward to show
(Lunceford & Davidian, 2004) that the inverse probability weighted estimators

μ̂IPW1 = n−1
n∑

i=1

Ri Yi

π(Xi , γ̂ )
and μ̂IPW2 =

{
n∑

i=1

Ri

π(Xi , γ̂ )

}−1 n∑
i=1

Ri Yi

π(Xi , γ̂ )
(1)

are consistent for μ if π(X, γ ) is correctly specified; that is, π0(X ) = π(X, γ0) for some γ0.
Alternatively, because under missing at random E{E(Y | R = 1, X )} = E{E(Y | X )} = E(Y ),

letting m0(X ) denote the true outcome regression E(Y | X ), it is natural to adopt a model m(X, β)
for m0(X ), estimate β by some β̂ using the complete cases {i : Ri = 1} and estimate μ by

μ̂OR = n−1
n∑

i=1

m(Xi , β̂), (2)

which is consistent for μ if m(X, β) is correctly specified; that is, m0(X ) = m(X, β0) for some
β0, and if β̂ is consistent for β0. Because β̂ is based only on the complete cases, if the distributions
of X conditional on R = 1 and R = 0 differ, (2) involves extrapolation.

From Robins et al. (1994) and Tsiatis & Davidian (2007), all estimators for μ that are consis-
tent and asymptotically normal when the propensity score model is correct are asymptotically
equivalent to an estimator of the form

n−1
n∑

i=1

{
Ri Yi

π(Xi , γ̂ )
+ Ri − π(Xi , γ̂ )

π(Xi , γ̂ )
h(Xi )

}
(3)
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for arbitrary h(X ). Estimators in class (3) are referred to as augmented inverse probability
weighted because they have the form of μ̂IPW1 in (1) plus an augmentation term depending
on h(X ); μ̂IPW1 is obtained when h(X ) ≡ 0. From Robins et al. (1994), the estimator with the
smallest asymptotic variance among those in class (3), so with π(X, γ ) correct, is

μ̂DR = n−1
n∑

i=1

{
Ri Yi

π(Xi , γ̂ )
− Ri − π(Xi , γ̂ )

π(Xi , γ̂ )
m(Xi , β̂)

}
, (4)

taking h(Xi ) = −m(Xi , β̂), where m(X, β) is correctly specified, and β̂ is consistent for β0.
Scharfstein et al. (1999) noted that μ̂DR remains consistent if only one of the outcome regression
model m(X, β) or the propensity score model π(X, γ ) is correctly specified, but is inconsistent
if both are misspecified; this property is referred to as double robustness. If m(X, β) is correct,
then μ̂OR is at least as efficient as μ̂DR (Tan, 2007) but is inconsistent otherwise, while double
robustness of (4) affords protection against such misspecification.

The estimator (4), with γ estimated by maximum likelihood and β estimated by ordinary or
iteratively reweighted least squares is generally regarded as the usual doubly robust estimator.
Kang & Schafer (2007) and Tan (2006) identified alternative doubly robust estimators, all involv-
ing models for the propensity score and outcome regression and some appearing to have forms
outside the augmented class (3). The former authors attributed poor performance of (4) when the
propensity or both models are misspecified in part to inverse weighting by the propensity score.
Tsiatis & Davidian (2007) noted that such alternative estimators can be rewritten in the form (3)
and used semiparametric theory to argue that poor performance when one or the other model
is incorrect may be partly a consequence of the method used to estimate β. In § 3, we identify
doubly robust estimators from this perspective. When both models are correct and γ is estimated
by maximum likelihood, all doubly robust estimators are consistent with the same asymptotic
variance; moreover, the asymptotic properties do not depend on the method used to estimate β

(Tan, 2007; Tsiatis & Davidian, 2007).

3. ALTERNATIVE DOUBLY ROBUST ESTIMATORS

In this section, we focus on estimation of β in a posited outcome regression model m(X, β),
possibly nonlinear in β, to identify doubly robust estimators with desirable properties. To fix
ideas, we consider first a fully specified propensity score model π(X ), say, involving no unknown
parameters; we relax this shortly. Suppose, for some estimator β̂ for β, we estimate μ by

n−1
n∑

i=1

{
Ri Yi

π(Xi )
− Ri − π(Xi )

π(Xi )
m(Xi , β̂)

}
. (5)

We now examine how to estimate β to achieve the estimator for μ of form (5) that is (i) doubly
robust and, (ii) if the propensity score is correctly specified, has smallest asymptotic variance
among all estimators for μ of form (5) using m(X, β), even if m(X, β) is incorrect.

Suppose first that the propensity score is correct, π(X ) = π0(X ), but m(X, β) may or may not
be correctly specified. It is straightforward to show that using any estimator β̂ in (5) leads to a
consistent estimator for μ whose asymptotic variance is the same as that of

n−1
n∑

i=1

{
Ri Yi

π0(Xi )
− Ri − π0(Xi )

π0(Xi )
m(Xi , β

∗)
}

, (6)
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where β∗ is the limit in probability of β̂. Using the formula var(·) = E{var(· | X, Y )} +
var{E(· | X, Y )}, this variance is proportional to

var
{

RY

π0(X )
− R − π0(X )

π0(X )
m(X, β∗)

}
= E

[
1 − π0(X )

π0(X )

{
Y − m(X, β∗)

}2
]

+ var(Y ). (7)

A natural objective is to identify the value of β∗, and corresponding estimators β̂ converg-
ing in probability to it, such that (7) is minimized whether or not m(X, β) is correct. Let-
ting mβ(X, β) = ∂/∂β{m(X, β)}, note that (7) is minimized by choosing β∗ as the solution to
E[{1 − π0(X )}π−1

0 (X ){Y − m(X, β∗)}mβ(X, β∗)] = 0, or equivalently

E
[

1 − π0(X )

π0(X )
{m0(X ) − m(X, β∗)}mβ(X, β∗)

]
= 0; (8)

denote this value by β∗
opt. Note that β∗

opt = β0 when m(X, β) is correctly specified.

Consider first the ordinary least-squares estimator for β, β̂1, say, solving

n−1
n∑

i=1

Ri {Y − m(Xi , β)} mβ(Xi , β) = 0, (9)

based on the complete cases. If the propensity score is correct, π(X ) = π0(X ), but
m(X, β) � m0(X ) for any β, then the left-hand side of (9) converges in probability to

E
[
π0(X ) {m0(X ) − m(X, β)} mβ(X, β)

]
. (10)

Then β̂1 converges in probability to the value β1 such that (10) equals zero; however, comparing
(10) to (8) shows β1 � β∗

opt. If the propensity score is incorrect, but the outcome regression model
is correct, so that m(X, β0) = m0(X ) for some β0, then the left-hand side of (9) again converges
to (10), and β1 = β0, so that β̂1 converges in probability to β0. Thus, the estimator (5) for μ using
β̂1 is doubly robust but does not achieve the minimum variance when the outcome regression
model is misspecified. Estimation of β by solving (9) would most likely be undertaken with
continuous Y ; a similar result holds if β is estimated via iteratively reweighted least squares, as
in the case of a generalized linear model m(X, β).

Suppose we consider instead estimating β by minimizing the empirical variance of (5),
n−2 ∑n

i=1[Ri Yiπ
−1(Xi ) − {Ri − π(Xi )}π−1(Xi )m(Xi , β)]2 in β, leading to β̂2 solving

n−1
n∑

i=1

Ri − π(Xi )

π(Xi )

{
Ri Yi

π(Xi )
− Ri − π(Xi )

π(Xi )
m(Xi , β)

}
mβ(Xi , β) = 0. (11)

If the propensity score is correct but m(X, β) � m0(X ) for any β, then the left-hand side of (11)
converges in probability to an expression of the form (8). Thus, it follows that β̂2 converges in
probability to β∗

opt. When the propensity score is incorrect but the outcome regression model is
correct, algebra shows that the left-hand side of (11) converges to

E

([
π0(X ){1 − π(X )}

π2(X )
m0(X ) −

{
π0(X ) − 2π0(X )π(X ) + π2(X )

π2(X )
m(X, β)

}]
mβ(X, β)

)
.

The value of β setting this equal to zero, to which β̂2 converges in probability, is clearly not β0.
Thus, the estimator (5) using β̂2 achieves minimum variance but is not doubly robust.

These calculations show that using familiar or seemingly intuitive techniques to estimate β for
use in (5) leads to estimators for μ that meet one of conditions (i) or (ii), but not both. To satisfy
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(i) and (ii) simultaneously, we consider β̂3 to be the solution to

n−1
n∑

i=1

Ri

π(Xi )

1 − π(Xi )

π(Xi )
{Yi − m(Xi , β)} mβ(Xi , β) = 0, (12)

which may be viewed as weighted least squares based on complete cases with weights
{1 − π(Xi )}/π2(Xi ). When the propensity score is correct but the outcome regression is not,
like that of (11), the left-hand side of (12) converges in probability to an expression of the
form (8), and hence β̂3 converges in probability to β∗

opt. When the outcome regression is
correctly specified and the propensity score is not, the left-hand side of (12) converges to
E[π0(X ){1 − π(X )}π−2(X ){m0(X ) − m(X, β)}mβ(X, β)], which equals zero when β = β0, so
that β̂3 converges in probability to β0. Thus, the estimator (5) for μ with β̂ = β̂3 is doubly robust
and achieves minimum asymptotic variance even if m(X, β) is misspecified.

In practice, a parametric propensity score model π(X, γ ) would be posited. Here, we cannot
use the above results directly to find an estimator for μ of the form of μ̂DR in (4), where γ̂ is the
maximum likelihood estimator for binary regression, that satisfies conditions (i) and (ii). There
is an effect of estimating γ that must be taken into account, so that finding β̂ converging to the
minimizer of (7), which assumes π(X ) is fully specified, does not necessarily lead to minimum
asymptotic variance under a model π(X, γ ) with γ estimated. However, we may exploit the
insights gained from the foregoing results, as we now demonstrate.

Let Sγ (R, X, γ ) = {R − π(X, γ )}[π(X, γ ) {1 − π(X, γ )}]−1πγ (X, γ ) be the score for γ ,
where πγ (X, γ ) = ∂/∂γ {π(X, γ )}. From the point of view of semiparametric theory, the el-
ements of the class of influence functions (Tsiatis, 2006, chapter 3) corresponding to esti-
mators for μ of the form (5), with fully and correctly specified π(X ) but possibly incorrect
m(X, β) and using β̂ converging in probability to some β∗, have the form RY/π0(X ) − [{R −
π0(X )}/π0(X )]m(X, β∗) − μ. The influence functions corresponding to estimators of the form
(4) when π(X, γ ) is correctly specified, so that π(X, γ0) = π0(X ) for some γ0, have the form

RY

π0(X )
− R − π0(X )

π0(X )
m(X, β∗) − �T

0(β∗)�−1
γ γ,0S(γ, R, X, γ0) − μ (13)

and this equals

RY

π0(X )
− R − π0(X )

π0(X )

{
m(X, β∗) + �T

0(β∗)�−1
γ γ,0

πγ,0(X )

1 − π0(X )

}
− μ, (14)

where πγ,0(X ) = πγ (X, γ0),

�0(β∗) = E
[
πγ,0(X ){m0(X ) − m(X, β∗)}/π0(X )

]
,

�γγ,0 = E
(
πγ,0(X )πT

γ,0(X )/[π0(X ){1 − π0(X )}]),
with �γγ,0 assumed nonsingular. The influence functions (13) thus involve an additional term
due to estimation of γ , the projection onto the propensity score tangent space, the linear space
spanned by the score (Tsiatis, 2006, Theorem 9.1). Because the influence function of an estimator
dictates its asymptotic variance, we would like to find β̂ to substitute in (4) converging to β∗∗

opt,
say, that minimizes the variance of (13). We do this by considering a class of influence functions
containing class (13), with elements

RY

π0(X )
− R − π0(X )

π0(X )
m(X, β∗) − c∗ TS(γ, R, X, γ0) − μ
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and this equals

RY

π0(X )
− R − π0(X )

π0(X )

{
m(X, β∗) + c∗ T πγ,0(X )

1 − π0(X )

}
− μ (15)

for arbitrary (β∗, c∗). Identifying the expression in braces in (15) as a function of (β∗, c∗) with
m(X, β∗) in (7) and (8), by analogy to (7) and (8), (β∗∗

opt, c∗∗
opt) solving

E

⎡
⎣1 − π0(X )

π0(X )

{
m0(X ) − m(X, β∗) − c∗ T πγ,0(X )

1 − π0(X )

} ⎧⎨
⎩

mβ(X, β∗)
πγ,0(X )

1 − π0(X )

⎫⎬
⎭

⎤
⎦ = 0

minimize the variance of (15). This yields c∗∗
opt = �T

0(β∗∗
opt)�

−1
γ γ,0, so that (15) with (β∗∗

opt, c∗∗
opt)

substituted has the same form as (14), and hence β∗∗
opt minimizes the variance of (13). Thus, an

estimator for μ of the form (4), with the smallest asymptotic variance when π(X, γ ) is correctly
specified but m(X, β) may not be, is achieved by using β̂ converging in probability to β∗∗

opt. By
analogy to (12), we propose estimating β by solving jointly in (β, c)

n∑
i=1

⎡
⎣ Ri

π(Xi , γ̂ )

1 − π(Xi , γ̂ )

π(Xi , γ̂ )

⎧⎨
⎩

mβ(Xi , β
∗)

πγ (Xi , γ̂ )

1 − π(Xi , γ̂ )

⎫⎬
⎭

{
Yi − m(Xi , β) − cT πγ (Xi , γ̂ )

1 − π(Xi , γ̂ )

}⎤
⎦ = 0. (16)

By an argument entirely similar to that following (12), when the propensity model is correct but
m(X, β) may or may not be, β̂4, say, solving (16) converges in probability to β∗∗

opt. When m(X, β)
is correct but π(X, γ ) is not, assuming that γ̂ converges in probability to some γ ∗, the quantity
to which the left-hand side of (16) converges in probability equals zero when (β, c) = (β0, 0).
Thus, taking β̂ = β̂4 in (4) yields an estimator for μ that is (i) doubly robust and (ii) achieves
minimum asymptotic variance when the propensity model is correct. In the sequel, we denote
this estimator by μ̂PROJ and denote the usual doubly robust estimator taking β̂ = β̂1, the ordinary
least-squares estimator for β solving (9), by μ̂USUAL.

Tan (2006) proposed a doubly robust estimator for μ that is closely related to μ̂PROJ. In the
present context, Tan’s estimator is equivalent to modelling E(Y | X ) by m(X, β) and estimating
β by ordinary or iteratively reweighted least squares (β̂1); replacing m(X, β) in (4) and (16)
by m̃(X, β̃) = α0 + α1m(X, β), β̃ = (α0, α1, β

T)T; holding β fixed at β̂1 and solving (16) in
(α0, α1, c), where mβ(X, β) is replaced by {1, m(X, β̂1)}T; and substituting the resulting estimates
for (α0, α1) and β̂1 for β̃ in (4). Denote this estimator by μ̂TAN. If, in constructing μ̂PROJ, we
similarly replace m(X, β) by m̃(X, β̃) in (4) and (16), but estimate all elements of β̃ simultaneously
by solving (16) with mβ(X, β) replaced by ∂/∂β̃{m̃(X, β̃)}, then, by the same reasoning as above,
the resulting estimator for μ will have asymptotic variance at least as small as that of μ̂TAN when
the propensity score is correct, as this estimator for β will converge in probability to the optimal
value minimizing this variance, while β̂1 used by Tan will not. If m(X, β) is correctly specified
but π(X, γ ) is not, because the estimator for β̃ obtained by either method converges in probability
to (0, 1, βT

0)T, both μ̂TAN and this version of μ̂PROJ are doubly robust; this would also hold if the
true form of E(Y | X ) were α0 + α1m(X, β) for (α0, α1) � (0, 1). Thus, although these versions
of μ̂PROJ and μ̂TAN are doubly robust, the former is at least as efficient as the latter.

All of the estimators μ̂USUAL, μ̂PROJ and μ̂TAN involve solving jointly a set of M-estimating
equations (Stefanski & Boos, 2002); for example, μ̂USUAL is found by solving the usual score
equation for γ , the ordinary least-squares equation (9) and the estimating equation implied by
(4). Thus, the asymptotic variance of the estimator for μ can be approximated by the usual
empirical sandwich technique; see Stefanski & Boos (2002). The resulting estimator for variance
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will be consistent for the true sampling variance even if one or both of the propensity or outcome
regression models is incorrectly specified.

4. ENHANCED PROPENSITY SCORE MODEL

Doubly robust estimators such as μ̂PROJ that also achieve minimum variance when the propen-
sity model is correct but the outcome regression model may not be should lead to improved per-
formance over μ̂USUAL under these conditions. However, the problem of large weights 1/π(Xi , γ̂ )
can also affect performance; as illustrated by Kang & Schafer (2007), if both models are even
mildly misspecified, then μ̂USUAL may be severely biased due to a few very large weights. If the
propensity model in particular is slightly misspecified, π(Xi , γ̂ ) can be erroneously close to zero
for some i . We consider an approach to address this issue.

If the propensity score model is correct, we expect that
∑n

i=1 Ri/π(Xi , γ̂ ) ≈ n. When the
estimated propensities for some observations are close to zero, this quantity can be very different
from n. We thus consider propensity models and estimators that impose the restriction that this
quantity be equal to n; if the chosen model is misspecified, this restriction will drive estimated
propensities away from zero. We thus propose an enhanced propensity score model, given by

pr(R = 1 | X ) = π(X, δ, γ ) = 1 − exp(δ + X̃ Tγ )

1 + exp(X̃ Tγ )
, (17)

where δ is a scalar parameter. If δ = 0, (17) reduces to a usual logistic regression model; otherwise,
δ is an enhancement imposing the constraint

∑n
i=1 Ri/π(Xi , δ̂, γ̂ ) = n. This follows because the

score for δ is n − ∑n
i=1 Ri/π(Xi , δ, γ ), so that if maximum likelihood is used to estimate (δ, γ T)T,

the constraint is satisfied automatically. Because π(X, δ, γ ) can take values outside (0, 1), we
impose 0 < π(X, δ, γ ) < 1 and implement maximum likelihood subject to this restriction, which
can be carried out with standard optimization packages.

From a semiparametric theory perspective, it may be shown that use of the enhanced model
should lead to an increase in efficiency in estimation of μ by any of the methods in § 3 relative
to using the logistic regression model with γ alone as long as (17) contains π0(X ). This follows
because the influence functions for these estimators when (17) is used involve an additional term
relative to those for the same estimators using the model with δ = 0. Those with the additional
term have smaller variance; see Tsiatis (2006, chapter 9).

5. SIMULATION STUDIES

We carried out several simulation studies to assess performance of the proposed methods under
two scenarios. For both scenarios, for each of n = 200 and 1000, we considered the four possible
combinations of correct and misspecified outcome regression and propensity score models. For
each scenario/setting combination, 1000 Monte Carlo datasets were generated, and the estimators
μ̂OR, μ̂USUAL, μ̂TAN and μ̂PROJ were calculated for each, where μ̂PROJ was constructed using m̃(X, β̃)
as described in § 3. We also constructed the estimators μ̂en

USUAL and μ̂en
PROJ, which are the indicated

estimators with the enhanced propensity model (17), replacing the usual logistic propensity model
described below and fitted by constrained maximum likelihood. For each estimator, sandwich
standard errors and nominal 95% Wald confidence intervals for μ were calculated. To calculate
μ̂en

USUAL and μ̂en
PROJ, we used the SAS IML optimizer nlpqn (SAS Institute, 2006) to fit the enhanced

propensity model.
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We duplicated the scenarios in Kang & Schafer (2007) and Tan (2007), which were designed
so that, when misspecified, the assumed outcome regression and propensity score models were
nonetheless nearly correct; our choice of these scenarios allows consideration of the proposed
methods in a familiar context that was designed to highlight differences among estimators. Kang
& Schafer found that, under their scenario, μ̂USUAL exhibited severe bias when both models were
misspecified but nearly correct, while μ̂OR was not as severely affected, leading the authors to
contend that ‘two wrong models are not necessarily better than one.’ Tan modified Kang &
Schafer’s scenario slightly and showed that versions of μ̂TAN offered improvement over μ̂USUAL.
For the Kang & Schafer scenario, for each i (i = 1, . . . , n), Zi = (Zi1, Zi2, Zi3, Zi4)T was
generated as standard multivariate normal, and the elements of Xi = (Xi1, Xi2, Xi3, Xi4)T were
defined as Xi1 = exp(Zi1/2), Xi2 = Zi2/{1 + exp(Zi1)} + 10, Xi3 = (Zi1 Zi3/25 + 0·6)3 and
Xi4 = (Zi2 + Zi4 + 20)2, so that Zi may be expressed in terms of Xi . For each i , Yi = m0(Xi ) +
εi for εi standard normal and m0(Xi ) = 210 + 27·4Zi1 + 13·7Zi2 + 13·7Zi3 + 13·7Zi4, and Ri

was generated as Bernoulli with true propensity π0(Xi ) = expit(−Zi1 + 0·5Zi2 − 0·25Zi3 −
0·1Zi4), where expit(u) = eu/(1 + eu). Correctly specified outcome regression and propensity
models were thus achieved when an additive linear regression of Yi on Zi and a logistic regression
with linear predictor additive in the Zi for Ri , respectively, were fitted; nearly correctly specified
models involved fitting these models with Xi replacing Zi ; see Kang & Schafer (2007). The Tan
scenario was identical to that of Kang & Schafer, except that Xi4 = (Zi3 + Zi4 + 20)2. The true
value of the mean is μ = 210.

Results for the Kang & Schafer and Tan scenarios are in Tables 1 and 2, respectively. When
both models are correct, all estimators perform similarly, and all of the doubly robust estimators
show negligible Monte Carlo bias when at least one of the models is correctly specified, as
expected. Moreover, μ̂PROJ and μ̂en

PROJ for the most part exhibit efficiencies no worse or better
than those of μ̂OR and the other doubly robust estimators on the basis of the root mean square
error and the median absolute error, and in particular dominate the others when the outcome
regression model is misspecified but the propensity model is correct, consistent with the basis
of their construction. When both models are incorrectly specified, μ̂USUAL shows nonnegligible
bias, as observed by Kang & Schafer (2007) and Tan (2007); however, the use of the enhanced
propensity model in μ̂en

USUAL eliminates this behaviour. The proposed estimators μ̂PROJ and μ̂en
PROJ

exhibit the best performance in terms of bias and efficiency when both models are misspecified;
in the Appendix, we sketch a heuristic argument suggesting that this behaviour is not unexpected.
Overall, μ̂en

PROJ shows the best performance across the range of settings in both scenarios.
Confidence intervals based on sandwich standard errors based on the doubly robust estimators

for the most part attain nominal coverage except when both models are misspecified in the Kang
& Schafer scenario; those for μ̂PROJ and μ̂en

PROJ perform consistently well except in this case. Not
unexpectedly, when the outcome regression model is misspecified, confidence intervals based on
μ̂OR can suffer from undercoverage.

6. DISCUSSION

Our work complements that of (Tan, 2006, 2007) and Robins et al. (2007), who also demon-
strated that it is possible to identify doubly robust estimators that do not suffer the drawbacks
demonstrated by Kang & Schafer (2007) under model misspecification. We have focused our
development on estimation of a single treatment mean in order to demonstrate the approach to
developing optimal, doubly robust estimators in § 3 in an accessible context; however, the results
are relevant to more complex estimands. In the case where a difference of treatment means is
of interest, if one restricts attention to outcome regression models linear in a vector of known
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Table 1. Simulation results based on 1000 Monte Carlo replications for the Kang & Schafer
scenario. Smallest, median, second largest, and largest standard errors for table entries: BIAS

(0·04, 0·08, 0·39, 5·58); AVESE (0·0008, 0·004, 0·58,6·64); COV (0·006, 0·007, 0·015, 0·015)
BIAS RMSE MAE MCSD AVESE COV BIAS RMSE MAE MCSD AVESE COV

n = 200
OR correct, PS correct OR correct, PS incorrect

μ̂OR −0·06 2·51 1·66 2·51 2·56 0·96 −0·06 2·51 1·66 2·51 2·56 0·96
μ̂USUAL −0·06 2·51 1·66 2·51 2·56 0·95 −0·05 2·53 1·70 2·53 2·57 0·95
μ̂PROJ −0·07 2·51 1·69 2·51 2·56 0·95 −0·06 2·50 1·68 2·50 2·56 0·96
μ̂TAN −0·05 2·51 1·68 2·51 2·58 0·95 −0·05 2·51 1·67 2·51 2·51 0·96
μ̂en

USUAL −0·06 2·51 1·66 2·51 2·56 0·96 −0·06 2·51 1·67 2·51 2·62 0·96
μ̂en

PROJ −0·06 2·51 1·68 2·51 2·58 0·95 −0·06 2·51 1·70 2·51 2·63 0·96

OR incorrect, PS correct OR incorrect, PS incorrect
μ̂OR −0·55 3·29 2·14 3·24 3·24 0·93 −0·55 3·29 2·14 3·24 3·24 0·93
μ̂USUAL 0·36 3·53 2·33 3·51 3·22 0·94 −5·19 13·26 3·62 12·20 6·54 0·92
μ̂PROJ −0·06 2·57 1·72 2·57 2·60 0·95 −0·39 3·58 2·00 3·55 3·28 0·93
μ̂TAN 0·16 2·88 1·96 2·88 2·81 0·95 −1·77 3·52 2·36 3·05 3·04 0·90
μ̂en

USUAL 0·54 3·26 2·27 3·22 3·37 0·94 −1·53 3·51 2·29 3·16 5·48 0·91
μ̂en

PROJ −0·04 2·57 1·70 2·57 2·85 0·96 −0·31 3·48 1·89 3·47 3·63 0·94

n = 1000
OR correct, PS correct OR correct, PS incorrect

μ̂OR −0·03 1·13 0·73 1·13 1·15 0·95 −0·03 1·13 0·73 1·13 1·15 0·95
μ̂USUAL −0·03 1·13 0·73 1·13 1·15 0·95 0·01 1·72 0·74 1·72 1·28 0·95
μ̂PROJ −0·03 1·13 0·72 1·13 1·15 0·95 −0·03 1·13 0·73 1·13 1·15 0·95
μ̂TAN −0·03 1·13 0·73 1·12 1·15 0·95 −0·03 1·13 0·73 1·13 1·15 0·95
μ̂en

USUAL −0·03 1·13 0·73 1·13 1·15 0·95 −0·03 1·13 0·73 1·13 1·15 0·95
μ̂en

PROJ −0·03 1·13 0·72 1·13 1·15 0·95 −0·03 1·13 0·73 1·13 1·15 0·95

OR incorrect, PS correct OR incorrect, PS incorrect
μ̂OR −0·78 1·68 1·18 1·49 1·48 0·91 −0·78 1·68 1·18 1·49 1·48 0·91
μ̂USUAL 0·12 1·64 1·09 1·64 1·54 0·93 −18·05 177·45 5·25 176·53 16·60 0·61
μ̂PROJ 0·01 1·14 0·73 1·14 1·16 0·95 −1·25 1·78 1·35 1·27 1·24 0·83
μ̂TAN 0·04 1·27 0·85 1·27 1·26 0·95 −1·69 2·24 1·80 1·47 1·43 0·76
μ̂en

USUAL 0·24 1·55 1·02 1·53 1·42 0·92 −2·00 2·44 2·08 1·41 1·39 0·69
μ̂en

PROJ 0·02 1·14 0·73 1·14 1·16 0·95 −0·96 1·58 1·16 1·25 1·24 0·88

BIAS, Monte Carlo bias; RMSE, root mean square error; MAE, median of absolute errors; MCSD, Monte Carlo standard
deviation; AVESE, average of sandwich standard errors; COV, Monte Carlo coverage of 95% Wald confidence intervals;
OR, outcome regression; PS, propensity score.

functions g(X ) for both treatments, then taking the difference of the optimal, doubly robust esti-
mators proposed here will lead to an optimal, doubly robust estimator for the mean difference;
see Tan (2006, p. 1623). However, this need not hold in general, for example, if the posited
outcome regression models are nonlinear in their parameters. In this case, it is possible to adapt
the approach here to derive directly an optimal, doubly robust estimator for the difference; a
sketch of the argument is available at http://www.stat.ncsu.edu/∼davidian. The proposed meth-
ods may also be adapted to the case of estimation of the parameter in a regression model, where
an estimator based on the full data may be derived as the solution to an M-estimating equation;
we are currently developing such methods in the case of monotonely coarsened longitudinal data
and will report the results elsewhere.
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Table 2. Simulation results based on 1000 Monte Carlo replications for the Tan scenario.
Entries are as in Table 1. The Tan and Kang & Schafer scenarios are distributionally identical
in the OR correct and PS correct cases. Smallest, median, second largest, and largest standard
errors for table entries: BIAS (0·04, 0·08, 0·76, 5·66); AVESE (0·0008, 0·004, 1·59, 9·78); COV

(0·006, 0·007, 0·010, 0·015)
BIAS RMSE MAE MCSD AVESE COV BIAS RMSE MAE MCSD AVESE COV

n = 200
OR correct, PS correct OR correct, PS incorrect

μ̂OR −0·06 2·51 1·66 2·51 2·56 0·96 −0·06 2·51 1·66 2·51 2·56 0·96
μ̂USUAL −0·06 2·51 1·66 2·51 2·56 0·95 −0·04 2·55 1·70 2·55 2·59 0·95
μ̂PROJ −0·07 2·51 1·69 2·51 2·56 0·95 −0·06 2·51 1·69 2·51 2·56 0·95
μ̂TAN −0·05 2·51 1·68 2·51 2·58 0·95 −0·05 2·50 1·65 2·50 2·56 0·96
μ̂en

USUAL −0·06 2·51 1·66 2·51 2·56 0·96 −0·06 2·51 1·67 2·51 2·57 0·95
μ̂en

PROJ −0·06 2·51 1·68 2·51 2·58 0·95 −0·06 2·51 1·68 2·51 2·62 0·95

OR incorrect, PS correct OR incorrect, PS incorrect
μ̂OR 2·64 4·10 3·02 3·14 3·08 0·88 2·64 4·10 3·02 3·14 3·08 0·88
μ̂USUAL 0·74 3·80 2·44 3·72 3·30 0·93 −2·76 24·18 2·76 24·02 7·71 0·95
μ̂PROJ 0·56 2·70 1·76 2·64 2·67 0·95 0·51 2·91 1·90 2·87 2·80 0·95
μ̂TAN 0·64 2·79 1·88 2·72 2·72 0·96 0·94 2·99 1·91 2·84 2·84 0·95
μ̂en

USUAL 1·37 3·42 2·33 3·13 3·22 0·91 1·36 3·28 2·18 2·99 3·65 0·93
μ̂en

PROJ 0·52 2·69 1·75 2·64 3·14 0·95 0·48 2·86 1·86 2·82 3·02 0·95

n = 1000
OR correct, PS correct OR correct, PS incorrect

μ̂OR −0·03 1·13 0·73 1·13 1·15 0·95 −0·03 1·13 0·73 1·13 1·15 0·95
μ̂USUAL −0·03 1·13 0·73 1·13 1·15 0·95 0·03 2·07 0·74 2·07 1·32 0·95
μ̂PROJ −0·03 1·13 0·72 1·13 1·15 0·95 −0·03 1·13 0·72 1·13 1·15 0·95
μ̂TAN −0·03 1·12 0·73 1·12 1·15 0·95 −0·03 1·12 0·73 1·12 1·15 0·95
μ̂en

USUAL −0·03 1·13 0·73 1·13 1·15 0·95 −0·03 1·13 0·73 1·13 1·15 0·95
μ̂en

PROJ −0·03 1·13 0·72 1·13 1·15 0·95 −0·03 1·13 0·73 1·13 1·15 0·95

OR incorrect, PS correct OR incorrect, PS incorrect
μ̂OR 2·31 2·72 2·32 1·43 1·41 0·63 2·31 2·72 2·32 1·43 1·41 0·63
μ̂USUAL 0·18 1·84 1·14 1·84 1·64 0·93 −17·89 179·88 2·65 178·98 22·60 0·94
μ̂PROJ 0·19 1·18 0·76 1·16 1·17 0·95 0·13 1·25 0·78 1·25 1·20 0·94
μ̂TAN 0·22 1·23 0·79 1·21 1·21 0·94 0·89 1·61 1·00 1·35 1·31 0·91
μ̂en

USUAL 0·53 1·56 1·03 1·47 1·27 0·89 0·73 1·47 0·97 1·28 1·27 0·91
μ̂en

PROJ 0·18 1·17 0·74 1·16 1·17 0·94 0·22 1·23 0·78 1·21 1·19 0·94

BIAS, Monte Carlo bias; RMSE, root mean square error; MAE, median of absolute errors; MCSD, Monte Carlo standard
deviation; AVESE, average of sandwich standard errors; COV, Monte Carlo coverage of 95% Wald confidence intervals;
OR, outcome regression; PS, propensity score.

Like the stabilized weights discussed by Robins et al. (2000), the enhanced propensity score
model proposed in § 4 is an effort to avoid weighting that is too disparate across individuals,
leading to instability of the estimator for the mean. In the simple context of estimating a single
mean, taking a stabilized weights approach is not possible; accordingly, the proposed enhanced
model provides an effective alternative. Other methods, such as truncating or smoothing estimated
propensities, may also yield improved performance.

It is worth noting that, when the outcome regression model is correct but the propensity model
is not, attempting to improve efficiency would be fruitless. Here, the optimal estimator is μ̂OR,
and the propensity score plays no role; see Tsiatis & Davidian (2007, p. 573).
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Detailed formulæ for the asymptotic variances of the estimators in this paper are available at
http://www.stat.ncsu.edu/∼davidian.
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APPENDIX

Performance under misspecification

We argue heuristically that μ̂PROJ and μ̂en
PROJ may perform well under misspecification of both the

propensity and outcome regression models. Suppose that m(X, β) in (5) may be misspecified and that π (X )
in (5) is misspecified as πn(X ) = π0(X ) + θns(X ), where limn→∞ n1/2θn = τ . If we substitute β̂3 solving
(12) in (5), because πn(X ) converges to π0(X ), β̂3 still converges in probability to β∗

opt. Thus, the resulting
estimator for μ, μ̂n , say, would be asymptotically equivalent to (6) with πn(X ) replacing π0(X ) and β∗ =
β∗

opt. Expanding this expression about π0(X ) shows that n1/2(μ̂n − μ) converges in distribution to a normal
random variable with mean −τ E[s(X ){Y − m(X, β∗

opt)/π0(X )], so μ̂n exhibits an asymptotic bias. Because

of (8), E[{1 − π0(X )}π−1
0 (X ){Y − m(X, β∗

opt)}cTmβ(X, β∗
opt)] = 0 for any constant vector c. It follows that,

letting q0(X ) = [{1 − π0(X )}/π0(X )]1/2, the asymptotic bias may be written as −τ E{(s(X )/[π0(X ){1 −
π0(X )}]1/2 − q0(X )cTmβ(X, β∗

opt))q0(X ){Y − m(X, β∗
opt)}}, the absolute value of which, by the Cauchy–

Schwarz inequality, is bounded by

τ [inf
c

E{(s(X )/[π0(X ){1 − π0(X )}]1/2 − q0(X )cTmβ(X, β∗
opt))

2}]1/2 (A1)

× (E[{q0(X )}2{Y − m(X, β∗
opt)}2])1/2. (A2)

If we were to use in (5) another estimator β̃, which converges in probability to some β∗∗, by a similar
argument, the resulting estimator μ̃n would have associated asymptotic bias whose absolute value is
bounded by τ [E{(s(X )/[π0(X ){1 − π0(X )}]1/2)2}]1/2 ×(E[{q0(X )}2{Y − m(X, β∗∗)}2])1/2. The first term
in this expression must be at least as large as (A1), because (A1) is the projection of s(X )/[π0(X ){1 −
π0(X )}]1/2 onto the linear space spanned by q0(X )mβ(X, β∗

opt), while the second must be greater than or
equal to (A2) by the definition of β∗

opt. Thus, the bound on asymptotic bias of μ̃n is greater than that for μ̂n;
moreover, the asymptotic variance of μ̃n is of course greater than that of μ̂n by construction. Although the
first result does not guarantee that μ̂n will show smaller bias, it does suggest that smaller bias may obtain
in many circumstances, particularly if s(X )/[π0(X ){1 − π0(X )}]1/2 may be well approximated by a linear
combination of q0(X )mβ(X, β∗

opt).
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